)Émombrement

Définition : partie vs liste (de l'importance de l'ordre des éléments)

Soit E un ensemble contenant n éléments. (on dit de cardinal n)(les éléments sont nécessairement distincts)

- Une partie de *E* (appelée aussi combinaison de *E*) est un sous-ensemble de *E*. L'ordre n'intervient pas et il n'y a pas de répétition. On note les éléments d'une partie entre accolades.
- Une liste (ou tuple) est une liste ordonnée d'éléments de E. Les répétitions sont possibles. On note les éléments d'une liste entre parenthèses.
- Les listes dont les éléments sont distincts (donc sans répétition) sont appelés arrangements.

Exemple : Soit $E = \{1; 2; 3\}$ (E est l'ensemble qui contient 3 éléments noté ici "1", "2" et "3")

- Les parties à 2 éléments de *E* sont {1; 2}; {1; 3}; {3; 2}; Il y en a 3.
- Les listes à 2 éléments sont (1; 1); (2; 2); (3; 3); (1; 3); (3; 1); (1; 2); (2; 1); (3; 2); (2; 3). Il y en a $3^2 = 9$
- Les arrangements à 2 éléments sont (1; 3); (3; 1); (1; 2); (2; 1); (3; 2); (2; 3). Il y en a 6

Remarques:

On note $\wp(E)$ l'ensemble de toutes les parties possibles de E (celles à 1 éléments, celles à 2 éléments, ...) (combien y en a-t-il?)

Une liste à 2 éléments est appelée un couple, à 3 éléments un triplet, à n éléments un n-uplet.

Les 9 couples précédents forment l'ensemble noté $\{1; 2; 3\} \times \{1; 2; 3\} = \{1; 2; 3\}^2$;

 $\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^3$ est l'ensemble des triplets (a, b, c) de 3 réels. (par exemple les coordonnées d'un point de l'espace)

Définition : factorielle d'un entier n

On note n! le nombre $n \times (n-1) \times ... \times 2 \times 1$ et par convention 0! = 1

Exemple: $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

PROPRIETE PRINCIPALE (dénombrement des parties et listes d'un ensemble):

Soit un *E* un ensemble à *n* éléments.

- nombre de listes à p éléments : n^p
- nombre de listes à p éléments distincts (p-arrangement): $n \times (n-1) \times ... \times (n-p+1) = \frac{n!}{(n-p)!}$
- nombre de façons d'ordonner p éléments distincts (nombre de permutations) : p!
- nombre de parties à p éléments (p-combinaison) : $\frac{(n \times (n-1) \times ... \times (n-p+1))}{n!} = \frac{n!}{(n-p)!n!}$

Définition: (coefficient binomial)

Le nombre $\frac{n!}{(n-p)!p!}$ se note $\binom{n}{p}$ et est appelé coefficient binomial "p parmi n" $(n \text{ et } p \text{ sont des entiers } p \leq n.)$

Exemples: $\binom{5}{1} = 5$; $\binom{5}{3} = \frac{5 \times 4 \times 3}{3 \times 2 \times 1} = 10$; $\binom{5}{0} = 1$ (il n'y a qu'une seule partie à 0 élément, c'est l'ensemble vide \emptyset)

- Propriétés des coefficients binomiaux

 Symétrie : $\binom{n}{p} = \binom{n}{n-p}$
 - Formule du capitaine (HP): $p\binom{n}{p} = n\binom{n-1}{p-1}$
 - Formule du clermontois Blaise Pascal: $\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$ d'où la construction suivante : faire ici le tableau

<u>Remarques</u>: Les coefficients binomiaux permettent d'écrire les développements $(a+b)^n$: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

<u>Propriété</u>: Le nombre total de parties d'un ensemble à n éléments, le cardinal de $\mathcal{D}(E)$, est 2^n . On a donc $\sum_{k=0}^n \binom{n}{k} = 2^n$ Considérons une partie A d'un ensemble E. Pour tout x de E, si $x \in A$ on lui affecte 1 et 0 sinon. À chaque partie correspond un n-uplets dans $\{0; 1\}$.

$E = \{Alice, Bob, Claire, Damien\}$

listes	arrangements	parties
Combien y a-t-il de possibilités si on récompense le(la) 1 ^{er(e)} en math et le(la) 1 ^{er(e)} en physique ?	Combien y a-t-il de podiums possibles (1 ^{er} et 2 ^e) après une course	Combien y a-t-il de choix possibles pour former une équipe de 2
le(la) 1 er(e) en physique ?	en sprint ?	personnes ?