Variables Aléatoires

On note Ω l'univers d'une expérience aléatoire

Définition :(variable aléatoire)

Définir une variable aléatoire X sur Ω consiste à associer à chaque issue de l'expérience un nombre réel. Une variable aléatoire est donc une fonction $X: \Omega \to \mathbb{R}$.

- Une fonction qui s'appelle une « variable aléatoire » et qui se note X, c'est étrange non ?
- Une variable aléatoire crée une nouvelle façon de définir des événements : par exemple l'événement $\ll X = 0$ » est constitué des issues dont l'image par X est 0.

Définition : (loi de probabilité associée à une variable aléatoire)

Déterminer une loi d'une variable aléatoire c'est déterminer toutes les valeurs que peut prendre X, puis déterminer, pour chaque valeur, la probabilité que X prenne cette valeur.

On regroupe ces informations dans un tableau qui est appelé la loi de X. (pour visualiser une loi on peut construire un diagramme en bâtons)

<u>Définition</u>: (espérance, variance et écart-type d'une loi)

Soit X la variable aléatoire dont la loi est donnée par le tableau suivant :

Valeur de X	x_1	x_2	 x_n
Probabilité	p_1	p_2	 p_n

- L'espérance de X, ou moyenne de X, est le nombre E(X) = x₁p₁ + ··· + x_np_n
 La variance de X, est le nombre V(X) = p₁(x₁ E(X))² + ··· + p_n(x_n E(X))²
- L'écart-type de *X* est le nombre $\sigma(X) = \sqrt{V(X)}$

Notation condensée avec les symboles de somme Σ : $E(X) = \sum_{k=1}^{n} x_k p_k$ et $V(X) = \sum_{k=1}^{n} p_k (x_k - E(X))^2$

<u>Propriété</u>: (Variable aléatoire construite à partir d'une autre)

Considérons X la variable aléatoire dont la loi est donnée par le tableau de la définition précédente. On peut alors créer une nouvelle variable aléatoire, notée Y par exemple, définie par Y = 3X + 10. Sa loi est alors :

Valeur de Y	$3x_1 + 10$	$3x_2 + 10$	 $3x_n + 10$
Probabilité	p_1	p_2	 p_n

Et ses indicateurs (espérance, variance, écart-type) sont :

$$E(Y) = 3E(X) + 10 \qquad | \qquad V(Y) = 3^2V(X) = 9V(X) \qquad | \qquad \sigma(Y) = 3\sigma(X)$$

<u>Propriété</u> : (Calcul de la variance à partir de 2 espérances. Formule de König-Huygens)

$$V(X) = E(X^2) - E(X)^2$$

<u>Propriété</u> : (la théorie et la pratique)

Soit un lancer de dé équilibré et X la variable aléatoire qui à chaque face associe le nombre correspondant :

Valeur de X	1	2	3	4	5	6
Probabilité	1/6	1/6	1/6	1/6	1/6	1/6

Dans la pratique, lorsqu'on lance 600 fois un dé, on n'obtient pas 100 le « 1 », 100 le « 2 »,... MAIS lorsqu'on fait la moyenne des 600 résultats, on obtient un nombre proche de la moyenne théorique $E(X) = 1 \times \frac{1}{6} + \cdots + \frac{1}{6} + \cdots +$ $6 \times \frac{1}{6} = 3.5$, et ceci est d'autant plus vrai que le nombre de lancer est grand, il sera même identique si on effectue une infinité de lancers.