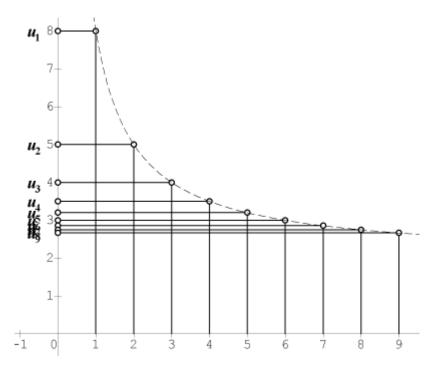
Suites de nombres

Une suite est une fonction particulière, (un type d'évolution) dont l'ensemble de définition est \mathbb{N} . Les images sont donc numérotées, il y a une $1^{\text{ère}}$ image, une $2^{\text{ème}}$, ...



Définition: (suite numérique)

Les nombres d'une suite ont appelés les termes de la suite.

On utilise également le mot *suite* pour désigner la fonction qui permet d'obtenir ces nombres. Cette fonction, notée souvent u, est définie sur $\mathbb{N} = \{0,1,2...\}$, c'est ce qui la distingue des fonctions que vous connaissez.

La suite de nombres s'écrire donc $u(0), u(1), \dots$ ou encore u_0, u_1, u_2, u_3

 u_n est le $n^{\text{ième}}$ nombre, le nombre du rang n. u_n est appelé terme général de la suite.

Contrairement aux fonctions que vous connaissez déjà, les images sont ici numérotées, il y a donc une image suivante, une image précédente : u_{n+1} est l'image qui suit u_n , alors u_{n-1} celle qui précède u_n .

Remarque: u_n est un nombre, c'est l'image de n par u, comme f(x) est l'image de x par f.

Particularité des suites : définition de proche de proche.

Une suite u peut-être définie comme une fonction ($u(n) = 2 + 2n^2$), mais elle peut aussi être définie par une relation, appelée relation de récurrence, donnant chaque terme en fonction des termes précédents. (u(n + 1) = 2u(n) + 5)

<u>Exemples</u>: La suite définie par $[u_0 = 105 \text{ et } u_{n+1} = 2u_n + 5] \text{ est}$: $u_0 = 105, u_1 = 215, u_2 = 435, ...$ La suite de Fibonacci est définie par $[u_0 = 0, u_1 = 1 \text{ et } u_{n+2} = u_{n+1} + u_n]$

Propriété : (représentation graphique)

Une suite de nombres peut être représentée comme une fonction, son graphe est constitué des points (n, u_n)

Suites arithmétiques

<u>Définition</u>: On dit qu'une suite est arithmétique lorsque chaque terme s'obtient en ajoutant un même nombre, appelé raison, au terme précédent. La définition de proche en proche est donc : $u_{n+1} = u_n + r$, avec r un réel.

Exemple: 3, 8, 13, 18, 23, ... est la suite arithmétique de raison 5 et de premier terme 3.

Propriété: (passage de la définition de proche en proche à une définition explicite)

$$u_{n+1} = u_n + r \ et \ u_0 \ donné$$

$$u_n = u_0 + n \times r$$

Remarque : Toute suite de la forme $u_n = an + b$ (donc une fonction affine !) est arithmétique de 1^{er} terme b et de raison a. Sa représentation graphique est donc un ensemble de points alignés !

Propriété: (lien entre les termes)

Si u est une suite arithmétique de raison r, alors pour tout couple d'entiers k et p, $u_k = u_p + (k - p)r$

Remarque : Il suffit donc de connaître la raison r et l'un quelconque des termes d'une suite.

Propriété : (somme des *n* premiers entiers, la formule du petit Gauß)

Pour tout entier
$$n \ge 1$$
,

$$1 + 2 + 3 + 4 + 5 + \dots + n = \frac{n(n+1)}{2}$$

<u>Corollaire</u>: (somme des n premiers termes d'une suite arithmétique)

La somme des termes consécutifs d'une suite arithmétique s'obtient à partir de la somme des n premiers entiers.

Suites géométriques

<u>Définition</u>: Une suite est géométrique lorsque chaque terme s'obtient en multipliant par un même nombre, appelé raison le terme précédent. La définition de proche en proche est donc $u_{n+1} = u_n \times q$, avec q un réel.

Exemple: 4, 20, 100, 500, 2500, ... est la suite géométrique de raison 5 et de premier terme 4.

Propriété: (passage de la définition de proche en proche à une définition explicite)

$$u_{n+1} = u_n \times q \ et \ u_0 \ donné$$

$$u_n = u_0 \times q^n$$

Remarque : Toute suite de la forme $u_n = b \times q^n$ est géométrique de 1er terme b et de raison q.

Propriété : (lien entre les termes)

Si u est une suite géométrique de raison q, alors pour tout couple d'entiers k et $p,u_k=u_p\times q^{k-p}$

Remarque : Il suffit donc de connaître la raison q et l'un quelconque des termes

<u>Propriété</u> : (somme des puissances successives des *n* premiers entiers)

Pour tout entier
$$n \ge 1$$
, $1 + q + q^2 + ... + q^n = \frac{1 - q^{n+1}}{1 - q}$

Sens de variation d'une suite

Définition:

Soit *u* une suite de nombres réels. On dit que :

- u est croissante lorsque, pour tout entier $n, u_{n+1} \ge u_n$
- u est décroissante lorsque, pour tout entier $n, u_{n+1} \le u_n$

On dit que u est monotone lorsque u est croissante ou décroissante.

Certaines suites ne sont ni croissantes ni décroissantes $u_n = (-1)^n$

Techniques pour étudier les variations d'une suite définie par récurrence :

- on étudie le signe de $u_{n+1} u_n$: si $u_{n+1} u_n \geqslant 0 \Leftrightarrow u_{n+1} \geqslant u_n \Leftrightarrow u$ est croissante on compare $\frac{u_{n+1}}{u_n}$ avec 1: si $\frac{u_{n+1}}{u_n} \geqslant 1 \Leftrightarrow u_{n+1} \geqslant u_n \Leftrightarrow u$ est croissante

Théorème : Soit u une suite arithmétique de raison r.

- u est croissante si et seulement si $r \ge 0$.
- u est décroissante si et seulement si $r \leq 0$.
- u est constante si et seulement si r=0.

<u>Démonstration</u>: u est croissante $\Leftrightarrow u_{n+1} \geqslant u_n \Leftrightarrow u_{n+1} - u_n \geqslant 0 \Leftrightarrow r \geqslant 0$

<u>Théorème</u>: Soit u est une suite géométrique de raison q et de premier terme $u_0 > 0$

- u est croissante si et seulement si $q \ge 1$.
- u est décroissante si et seulement si $0 \le q \le 1$.

Remarque : Si $q \le 0$, la suite oscille et n'est donc ni croissante ni décroissante.

Limite éventuelle d'une suite

On se pose ici la question du devenir des termes de la suite lorsque n grandit infiniment. La limite de la suite, si elle existe, est u_{∞} . Elle peut valoir $+\infty$, $-\infty$ ou une valeur finie souvent notée ℓ .

Pour connaître des valeurs approchées de nombres comme π , $\sqrt{2}$, ..., on construit des suites qui tendent vers ces nombres.

Propriétés

Si les termes de la suite deviennent aussi proches que l'on veut d'un nombre ℓ , on dit que u converge vers ℓ . ℓ est la limite de la suite, u_{∞} existe et vaut ℓ . On note $\lim_{n \to \infty} u_n = \ell$

Si les termes de la suite deviennent aussi proches que l'on veut de $+\infty$, on dit que u diverge vers $+\infty$. $+\infty$ est la limite de la suite, u_∞ existe et vaut $+\infty$. On note $\lim_{n \to +\infty} u_n = +\infty$

Si les termes de la suite deviennent aussi proches que l'on veut de $-\infty$, on dit que u diverge vers $-\infty$. $-\infty$ est la limite de la suite, u_∞ existe et vaut $-\infty$. On note $\lim_{n \to +\infty} u_n = -\infty$

Exemples:

La suite $u_n = 2 + \frac{1}{n}$ converge vers 2.

La suite $u_0 = 1$ et $u_{n+1} = \frac{1}{2}(u_n + \frac{2}{u_n})$ converge vers $\sqrt{2}$

La suite $u_n = 2n + n^2$ diverge vers $+\infty$

La suite $u_0 = 1$ et $u_{n+1} = u_n + u_n^2$ diverge vers $+\infty$.

La suite $u_n = (-1)^n$ n'a pas de limite!